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1. Introduction

The M2-branes of M-theory may have boundaries on an M5-brane because the M2-charge

can be taken up by the 2-form gauge potential on the M5-brane worldvolume [1, 2]. Fol-

lowing the determination of the M5-brane equations of motion [3] and the construction

of its action [4], it was verified that there exists a ‘soliton-type’ solution with this inter-

pretation [5]. This possibility can also be understood from the M2-brane perspective in
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terms of its superalgebra [6], and is realizable in terms of an open membrane subject to

appropriate boundary conditions [7] but not, for a single M2-brane, as a ‘soliton-type’

solution of the M2-brane equations of motion. This is hardly surprising given the dispar-

ity in dimension but one may imagine that multiple M2-branes could expand to generate

the required extra dimensions as a ‘fuzzy’ 3-sphere, and an equation that might describe

such a configuration was proposed by Basu and Harvey [8]. This equation led Bagger and

Lambert to propose [9], as a low-energy limit of coincident planar M2-branes, a novel class

of 3-dimensional maximally supersymmetric gauge theories based on Filippov 3-algebras,

rather than Lie algebras; a similar framework was developed by Gustavsson [10]. Such

gauge theories have the OSp(8|4) superconformal symmetry expected of an action for mul-

tiple M2-branes in a low-energy limit [11], and they admit the Basu-Harvey equation as a

‘BPS’ equation.

Explicit realizations of the Bagger-Lambert-Gustavsson (BLG) theory arise from spe-

cific Filippov 3-algebras. A particular 4-dimensional example, A4, was considered by Bag-

ger and Lambert [9] but the corresponding BLG model has since been shown [12, 13] to

describe the dynamics of two M2-branes on an orbifold rather than flat space. This model

is also disappointing in one other respect: it is equivalent to a ‘standard’ Chern-Simons

(CS) theory for gauge group SU(2) × SU(2) coupled to N = 8 matter multiplets in the

(2,2) representation [14], so the novel algebraic structure of the general construction plays

no essential role in this example. Furthermore, all other finite-dimensional Filippov ‘met-

ric’ 3-algebras (those with positive definite algebra-compatible metric) are direct sums of

A4 and trivial one-dimensional 3-algebras [15, 16], so the nature of the action describing

the low-energy dynamics of an arbitrary finite number N of coincident planar M2-branes

remains an unsolved problem, although there is no shortage of proposals. We will return

to this point at the conclusion of this paper; for most purposes here it is sufficient that

there are clear candidates for the N → ∞ limit, which one can view as describing possible

‘condensates’ of coincident planar M2-branes. These are the BLG theories in which the

Filippov 3-algebra is realized by the Nambu-bracket [17] of functions defined on some 3-

manifold M3; the choice M3 = S3 then leads to a version of the Basu-Harvey equation in

which the fuzzy 3-sphere becomes a classical 3-sphere [18].

Recall that the Nambu n-bracket for n functions (φ1, . . . , φn) on a closed n-dimensional

manifold Mn with coordinates σi (i = 1, . . . , n) is
{

φ1, . . . , φn
}

= e−1εi1...in∂i1φ
1 · · · ∂inφ

n , (1.1)

where ε is the invariant antisymmetric tensor density on Mn. We choose to define this

bracket as a scalar on Mn by dividing by some fixed scalar density e on Mn. The space of

functions on Mn can then be viewed as an infinite-dimensional ‘n-algebra’. This algebra

obeys a ‘fundamental’ identity that can be expressed simply in terms of two anticommuting

(‘ghost’) functions (B,C) on Mn:

{B, . . . , B, {C, . . . , C}} = n{{B, . . . , B,C}, C, . . . , C} . (1.2)

Abstractly, any n-algebra defined by an n-linear antisymmetric product that obeys the

fundamental identity is a Filippov n-algebra. The n-algebra of the space of func-
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tions on Mn with respect to the Nambu n-bracket is therefore an infinite-dimensional

Filippov n-algebra.

One should not think of the density e on Mn as derived from a metric on Mn because

no metric will be used in our constructions, but one may choose e to coincide with
√
g

for some ‘fiducial’ metric g that one could introduce for this purpose. For example, if

Mn
∼= Sn then one may choose e =

√
g where g is the SO(n + 1)-invariant metric on the

unit n-sphere. This choice facilitates the identification of the finite-dimensional sub-algebra

that exists when Mn
∼= Sn. Consider (n + 1) functions Xa (a = 1, . . . , n + 1) subject to

the constraint
n+1
∑

a=1

X2
a = 1 . (1.3)

Given that e has been chosen as specified above, then

{Xa1
, . . . Xan} = ǫa1...anan+1Xan+1

, (1.4)

which shows that theXa span an (n+1)-dimensional subalgebra: An. For n = 2 the Nambu

bracket is a Poisson bracket and we therefore have a realization of the Lie algebra su(2) by

functions on S2, so A3 = su(2). For n = 3 we have a realization of the four-dimensional

Filippov 3-algebra A4 by functions on S3.

As suggested in [18] and shown in [19 – 21], the Nambu bracket realization of the BLG

theory is an ‘exotic’ gauge theory for the group SDiff(S3) of volume-preserving diffeomor-

phisms of the 3-sphere. A rather explicit discussion of this group is given in [22]; other

3-manifolds M3 yield slightly different theories; we return to this point in the final section

but otherwise pass over it, using the notation SDiff3 for the group of volume-preserving dif-

feomorphisms of any closed 3-manifold M3. We say that SDiff3 gauge theories are ‘exotic’

because they cannot be obtained from an ‘abstract’ YM theory, whereas this is possible

for SDiff2 gauge theories; we elaborate on this this point later. Since the fields of an SDiff3

gauge theory also depend on the three coordinates of M3, the Nambu bracket realization

of the BLG theory is effectively a 6-dimensional theory. It has been suggested that this is a

version of the M5-brane action [19, 20], although the most straightforward way to extract

an SDiff3 gauge theory from the standard M5-brane action leads to the Carrollian limit of

the BLG theory [21].

The main aim of this paper is to put the Nambu-bracket realization of the BLG theory

into a larger context by developing further the general principles of SDiff gauge theory. It is

well-known that SDiff2 gauge theories may loosely be considered as N → ∞ limits of SU(N)

gauge theories in which the matrix commutator becomes the Poisson bracket of functions

on a 2-manifold [23], the 2-sphere being the simplest case. Such theories first arose from

light-cone gauge-fixing of a relativistic membrane, and the application to the M2-brane

yields a maximally supersymmetric gauge mechanics model in which the gauge group is

the infinite-dimensional group of area-preserving diffeomorphisms of the membrane. In

the case of a spherical membrane, there is a sequence of truncations of the group of area-

preserving diffeomorphisms to SU(N) that reduces the membrane action to the action for

a maximally-supersymmetric SU(N) gauge mechanics model [24]; this truncation is one in
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which the classical 2-sphere is replaced by a fuzzy sphere [25]. The truncated model can

be interpreted as describing the dynamics of multiple D0-branes [2], and is the basis of the

M(atrix) model formulation of M-theory [26].

In the context of gauge mechanics models, which we may view as examples of D-

dimensional gauge theories for D = 1, there exist SDiffn gauge theories for any n = p

obtained by the light-cone gauge-fixing of the action for a relativistic p-brane [27] (although

supersymmetry constrains p and hence n). What we are interested in this paper is how

SDiffn gauge theories may be constructed for D > 1. The answer to this question for n = 2

is known. Because SDiff2 gauge theories are just standard, albeit infinite-dimensional,

Yang-Mills theories, any Yang-Mills theory that can be constructed for all SU(N) can also

be constructed for SDiff2 [28]. For example, one may choose the gauge group for the D = 4

N = 4 super-Yang-Mills theory to be SDiff(S2), in which case we have a 6-dimensional

theory. It is possible that this is related to the M5-brane in the much the same way as the

Nambu-bracket realization of the BLG theory, but we shall not investigate this possibility

here. Instead, we focus on possibilities for SDiffn gauge theories with n > 2.

It appears that there are no useful possibilities for n ≥ 4 because of the difficulty in

constructing a kinetic term for the gauge potential without a metric on Mn. For this reason,

we focus on the n = 3 case. Remarkably, SDiff3 gauge theories may be constructed for

any spacetime dimension D in close analogy to Yang-Mills theory, although these theories

are still ‘exotic’ in the sense explained above. However, they are unlikely to be of any

physical relevance because their energy density is not positive definite. For D = 3 there is

another option: one may construct a Chern-Simons-type term. This leads to a new class

of (super)conformal D = 3 gauge theories, which we focus on in this paper. The Nambu

bracket realization of the BLG theory is the maximally-supersymmetric SDiff3 gauge theory

of this type, and we re-construct it from our formalism, presenting simple proofs of both

its N = 8 supersymmetry and its superconformal invariance. Although there is no free

field limit of the BLG action, we show that one can take a free-field limit of the equations

of motion, in which case one arrives at a theory for an infinite number of non-interacting

N = 8 scalar supermultiplets related by a rigid SDiff3 symmetry.

As we are attempting to put the BLG model into a more general context, we consider

the general construction of superconformal SDiff3 gauge theories in terms of N = 1 super-

fields.1 Obviously, any (Minkowski space) SDiff3 gauge theory with N > 1 supersymmetry

can be written in terms of N = 1 superfields, although the extended supersymmetry will

not then be manifest. To make the N = 8 supersymmetry of the BLG theory manifest,

one needs a formulation of it in terms of N = 8 superfields. After the original version of

this paper appeared on the archives, two distinct proposals were made for an N = 8 super-

field formulation: one an off-shell formulation of the abstract BLG theory [30, 31] using a

‘pure-spinor superspace’, the other an on-shell N = 8 superfield formulation of the Nambu

bracket realization of the BLG theory [32]. Here we review the latter approach, with some

simplifications, and we explain how the former approach extends to the Nambu-bracket

1An N = 1 formulation of the abstract BLG theory was proposed previously in [29] but the Nambu

bracket realization was not spelled out there.
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realization of the BLG theory.

The low-energy dynamics of N coincident (or nearly-coincident) parallel planar D2-

branes is an N = 8 supersymmetric D = 3 gauge theory with gauge group SU(N). As

explained above, SU(N) can be viewed as a finite-dimensional approximation to SDiff2

(at least when M2 = S2). It follows that the N = 8 supersymmetric Yang-Mills theory

with gauge group SDiff2 may be interpreted as the field theory describing the low-energy

dynamics of a D2-condensate, in much the same sense as the BLG theory describes an

M2-condensate. In fact, we expect the renormalization group flow of a model for the D2-

condensate to yield, in the infra-red limit, a model for the M2-condensate because this limit

decompactifies IIA superstring theory to M-theory. Conversely, one might expect an S1-

compactification of a model for the M2-condensate to yield a model for the D2-condensate.

Here we show that the N = 8 supersymmetric D = 3 SDiff2 Yang-Mills theory is indeed

an S1-compactification of the SDiff3 BLG theory, in a sense that we make precise. We

also show that this model is an S1-compactification, in a different sense, of the N = 4

supersymmetric D = 4 SDiff2 Yang-Mills theory mentioned above.

2. SDiff gauge theory

Let Mn be a closed n-dimensional real manifold that is compact with respect to some (non-

dynamical) scalar density e in local coordinates σi (i = 1, . . . , n). In new local coordinates

σi + ξi(σ), for infinitesimal vector field ξ, the scalar density becomes e − ∂i(eξ
i), so the

total volume is unchanged (as expected since this cannot depend on the choice of coordinate

atlas for Mn) but the local volume density changes unless we impose the constraint

∂i

(

eξi
)

= 0 . (2.1)

The space of vector fields on Mn satisfying this constraint is a subalgebra of the algebra

of all vector fields with respect to the Lie bracket of vector fields. It is the Lie algebra of

the group SDiff(Mn) of ‘volume-preserving’ diffeomorphisms of Mn, which we abbreviate

to SDiffn.

We are concerned here with field theories in D-dimensional Minkowski spacetime, with

cartesian coordinates xµ, and ‘mostly plus’ metric ηµν . Consider a scalar field φ that is

also a scalar on Mn; it can be expanded in Mn-harmonics so φ contains an infinity of

Minkowski scalar fields, which transform among themselves under the infinite-dimensional

group SDiffn. The infinitesimal SDiffn transformation of φ is

δξφ = −ξi∂iφ . (2.2)

More generally, for any Minkowski-field T that is also a tensor on Mn, the infinitesimal

SDiffn transformation is

δξT = −LξT , (2.3)

where Lξ is the Lie derivative with respect to ξ. Besides (2.2), other important special

cases are

δξv
i = −ξj∂jv

i + vj∂jξ
i , δξωi = −ξj∂jωi − (∂iξ

j)ωj . (2.4)

– 5 –



J
H
E
P
0
2
(
2
0
0
9
)
0
1
3

for vector vi and one-form ωi on Mn.

It is not difficult to construct Minkowski-space field theories that have a rigid SDiffn

invariance. For example, the Lagrangian density.

L =

∮

dnσ e

[

−1

2
ηµν∂µφ∂νφ− V (φ)

]

(2.5)

is SDiffn-invariant, for any potential function V , as long as the Mn-vector parameter ξ is

independent of the Minkowski space coordinates. This is an interacting Lagrangian density

for the infinite number of Minkowski scalar fields contained in the Mn-harmonic expansion

of φ. However, we are interested in constructing SDiffn gauge theories for which the SDiffn

invariance is local, in the sense that ξ is allowed to be an arbitrary Minkowski scalar in

addition to being a divergence-free Mn-vector field. This will require new ingredients, as

we explain next.

2.1 Local SDiffn invariance

The Minkowski spacetime derivative dT = dxµ∂µT is again a tensor on Mn (of the same

type) as long as ξ is assumed to be independent of the Minkowski spacetime coordinates, but

if we insist on local SDiffn invariance then we need to use the covariant exterior derivative

D = d+ Ls , s = dxµsµ
i ∂i , (2.6)

where the one-form-valued Mn-vector field s satisfies the constraint

∂i

(

esi
)

≡ 0 . (2.7)

One may verify, for Mn-tensor T , that

δξ (DT ) = −Lξ (DT ) , (2.8)

provided that we assign to s the SDiffn gauge transformation

δξs = dξ − [ξ, s] , (2.9)

where the bracket [,] indicates a commutator of vector fields on Mn. In particular, for

Mn-scalar φ,

Dφ = dφ+ si∂iφ , δξ(Dφ) = −ξi∂i(Dφ) . (2.10)

Note that the constraint (2.7) is SDiffn invariant as a consequence of (2.1).

This formalism may be extended to tensor densities on Mn. In particular, the SDiff

gauge transformation of the scalar density e is zero because of the constraint (2.1). We

assume that e is independent of the Minkowski coordinates; i.e.

de = 0 (⇔ ∂µe = 0) . (2.11)

As a consequence, one may show that2

D (eT ) = eDT . (2.12)

2For example, both sides vanish when T = 1, the left hand side because de = 0 and the right hand side

by the definition of DT .
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As for Yang-Mills gauge theories, we may define the covariant 2-form field-strength

of s as3

F = ds+
1

2
[s, s] . (2.13)

This has the SDiff gauge transformation

δξF = −[ξ, F ] , (2.14)

and it satisfies the ‘Bianchi’ identity DF ≡ 0, i.e.

dF + [s, F ] ≡ 0 . (2.15)

We may write F = F i∂i, where

F i = dsi + sj∂js
i . (2.16)

This satisfies the additional identity

∂i

(

eF i
)

≡ 0 . (2.17)

2.2 Pre-gauge invariance

The constraints (2.1) and (2.7) may be solved, locally, by writing

eξi = εijk1...kn−2∂jωk1...kn−2
, esi = εijk1...kn−2∂jAk1...kn−2

, (2.18)

where the (n − 2)-form ω (on Mn) is an unconstrained parameter, and A is an (n − 2)-

form pre-potential on Mn (in addition to being a 1-form on the D-dimensional Minkowski

spacetime); its SDiffn transformation is4

δξAi1...in−2
= dωi1...in−2

− ξj∂jAi1...in−2
− (n− 2) ∂[i1ξ

jA|j|i2...in−2] . (2.19)

In addition, for n ≥ 3, we have the abelian pre-gauge transformation5

Ai1...in−2
→ Ai1...in−2

+ ∂[i1ai2...in−2] (2.20)

for a parameter a that is an (n− 3)-form on Mn. The ‘pre-field-strength’ 2-form

Gi1...in−2
= dAi1...in−2

+
(n− 1)

2
sj∂[jAi1...in−2] (2.21)

is SDiffn covariant and satisfies the ‘pre-Bianchi’ identity DG ≡ 0. However, it is not

pre-gauge invariant since

Gi1...in−2
→ Gi1...in−2

+ d
[

∂[i1ai2...in−2]

]

. (2.22)

3We use the convention in which d acts ‘from the left’.
4In our convention, square brackets indicate antisymmetrization of the indices enclosed with ‘strength

one’ (so that the brackets may be simply omitted on contraction of all antisymmetrized indices with some

other antisymmetric tensor).
5This holds also for n = 2 if we view the pre-gauge transformation as a shift of A by a closed (n−2)-form

on Mn, in which case the M2-scalar A is shifted by an arbitrary Minkowski 1-form that is constant on M2.
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The pre-gauge-invariant and SDiff covariant 2-form is the Mn-vector F i, since

eF i = εijk1...kn−2∂jGk1...kn−2
. (2.23)

We remark that the expression (2.21) is equivalent to

Gi1...in−2
= dAi1...in−2

− 1

2 (n− 2)!
ǫjki1...in−2

sj ∧ sk , (2.24)

where ǫi1...in are the components of an n-form ǫ defined such that

εi1...inǫj1...jn = e n! δ
[i1
j1

· · · δin]
jn
. (2.25)

2.3 Actions

Actions that are invariant under local SDiffn gauge transformations can be constructed from

Minkowski space tensors that are also scalars on Mn via the SDiff covariant derivative. For

example, the local SDiffn invariant version of (2.5) is

L =

∮

dnσ e

[

−1

2
ηµνDµφDνφ− V (φ)

]

. (2.26)

Given at least n scalar fields, potentials may also be introduced via the Nambu n-

bracket: a possible SDiffn invariant potential for any n scalar fields (φ1, . . . , φn) is

V =

∮

dnσ e {φ1, . . . , φn}2 . (2.27)

The main obstacle to the construction of SDiffn gauge theories is, for D > 1, the diffi-

culty in finding a suitable ‘kinetic’ term for the SDiffn pregauge potential.6 This difficulty

appears insuperable for n ≥ 4, so the main case of interest here will be n = 3. However,

we begin with a review of the n = 2 case.

2.3.1 Gauge theories of area-preserving diffeomorphisms

For n = 2, the divergence-free constraint on the YM potential s implies, locally on M2, that

esi = εij∂iA , (2.28)

where the scalar A is the pre-potential 1-form. Using this, we may rewrite the SDiff2

covariant derivative as

Dφ = dφ− {A,φ} , (2.29)

where {, } is the Poisson bracket of functions on M2; i.e.

{A,φ} := e−1εij∂iA∂jφ . (2.30)

We see that the SDiff2 covariant derivative takes the form of a YM covariant derivative if

we re-interpret A as a YM potential taking values in the infinite-dimensional Lie algebra of

6For D = 1 the pregauge potential is the Lagrange multiplier for the SDiffn constraints [27].
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functions on M2 with respect to the Poisson bracket. This algebra is isomorphic to SDiff2

for M2 = S2; for other topologies there is a finite number of divergence-free vector fields

that cannot be written as in (2.28) but we ignore these here.

Now consider the Lagrangian density

L = −1

4

∮

d2σ eηµρηνσGµνGρσ . (2.31)

where G is the pre-field strength. Because of the isomorphism noted above, this is also a

YM field-strength for A:

G = dA− 1

2
{A,A} , (2.32)

The action is not invariant under the pre-gauge transformation G → G + da, where a is

a scalar on M2, but this just means that the action includes a Maxwell action for a U(1)

factor, which may be omitted because it is decoupled from the other fields.

2.3.2 Gauge theories of volume-preserving diffeomorphisms

For n = 3 the SDiff pre-field-strength 2-form is

Gi = dAi + sj∂[jAi] . (2.33)

This is not a YM field strength. One might wonder, by analogy with the SDiff2 case,

whether Ai takes values in some Lie algebra, presumably related to SDiff3, but it appears

that such a re-interpretation is not possible [33]. We are now dealing with an ‘exotic’

gauge theory. In view of this, it is not surprising that there is no longer any way to form

a standard YM Lagrangian density. In any case, Gi is not pre-gauge invariant. However,

the Minkowski scalar density

L =

∮

d3σ eF i
µν G

µν
i (2.34)

is a possible kinetic term; it is both SDiff3 gauge invariant, manifestly, and pregauge-

invariant as a consequence of the constraint (2.17). One may use this term to construct

gauge theories that are analogous in many respects to standard Yang-Mills theories; in

particular, one may construct simple supersymmetric gauge theories of volume-preserving

diffeomorphisms in dimensions D = 3, 4, 6, 10.

Here we present the D = 10 case for which the superpartner to the gauge prepoten-

tial Ai is a Majorana-Weyl spinor that is also a 1-form on M3; the result also applies,

mutatis mutandis, for D = 3, 4, 6. Suppressing the Lorentz spinor index, we denote this

superpartner by χi, and we take χ̄i to be the D = 10 Majorana conjugate spinor. Let

Γµ be the D = 10 Dirac matrices, and Γµν the antisymmetrized product of two of them

(with ‘strength one’ convention for antisymmetrization). Now consider the SYM-like La-

grangian density

L =

∮

d3σ
[

eF i
µνG

µν
i + iεijk∂iχ̄jΓ

µ (Dµχ)k

]

. (2.35)

Using the pre-Bianchi identity DG ≡ 0, and the usual D = 10 Dirac-matrix iden-

tities, one can show that the corresponding action is invariant under the super-

symmetry transformations

δAµi = iǭΓµχi , δχi = e−1 ΓµνǫGµν i , (2.36)
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where the parameter ǫ is a constant anti-commuting Majorana-Weyl spinor.

This construction uses the fact that there is a natural bilinear inner product 〈 | 〉 on

the space of one-forms on M3: the inner product of one-forms ω and ω′ is

〈ω|ω′〉 :=

∮

d3σ εijkωi∂jω
′
k . (2.37)

However, this inner product is not positive semi-definite, and this means that the energy

density will not be positive definite. A more physical class of SDiff3 gauge theories is

possible for D = 3, as we explain in the following section.

2.3.3 n ≥ 4

For n = 4 the pre-field-strength Gij is an abelian 2-form potential on M4, and the field-

strength F i is (as always) a vector. As for n = 3, there is no way to construct an SDiff4

invariant from products of F i alone, so Gij must be used too but the possibilities are

then severely restricted by the requirement of pre-gauge invariance. In fact, there are no

SDiff4 and pregauge invariants that can be constructed from Gij and F i alone, and the

same applies for n > 4. We will not pursue the possibility that such invariants exist once

additional fields are introduced since we have not found anything useful in this way.

3. Conformal SDiff3 gauge theories

There is an additional possibility for SDiff3 gauge theories that arises only for D = 3.

Consider first, for a D = 4 Minkowski spacetime, the Minkowski 4-form

LFG =

∮

d3σ eF i ∧Gi . (3.1)

This is manifestly SDiff3 gauge invariant, and pregauge invariant as a consequence of the

constraint (2.17). One may show that, locally on Minkowski spacetime,

LFG = dLCS (3.2)

where

LCS =

∮

d3σ e

[

dsi ∧Ai −
1

3
ǫijks

i ∧ sj ∧ sk

]

. (3.3)

Recall, as a special case of (2.25), that the alternating tensor ǫijk is defined by

εijkǫℓmn = 6e δ
[i
ℓ δ

j
mδ

k]
n . (3.4)

We note, for future use, that for any variation δAi of Ai, one has

δLCS = 2

∮

d3σ e δAi ∧ F i − d

[
∮

d3σ esi ∧ δAi

]

. (3.5)
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3.1 Chern-Simons-type gauge theories

We may now use LCS as a Lagrangian 3-form for a D = 3 Minkowski spacetime. This

yields the Lagrangian density

LCS =

∮

d3σ eǫµνρ

[

(

∂µs
i
ν

)

Aρ i −
1

3
ǫijks

i
µs

j
νs

k
ρ

]

. (3.6)

Omitting a total spacetime derivative, one has for arbitrary variation δAµi,

δLCS =

∮

d3σ
[

εµνρδAµiF
i
νρ

]

, F i
µν := 2

(

∂[µs
i
ν] + sj

[µ∂js
i
ν]

)

. (3.7)

One may use this result to verify that the action is both SDiff3 invariant and, because of the

constraint (2.7), pre-gauge invariant; it is also conformal invariant if the M3 coordinates

are inert and the pre-potential 1-form Ai is assigned conformal weight zero (as for the

Minkowski-space exterior derivative d). This action is analogous to the Chern-Simons

(CS) term of a D = 3 YM gauge theory, but the analogy is not complete because Ai is

not a YM gauge potential, but rather its pre-potential, and for this reason we will say that

it is of CS ‘type’. A peculiarity of this CS-type term is that it is parity-even rather than

parity-odd because a parity flip in the D = 3 spacetime can be compensated by a parity

flip of M3.

Suppose that we add to LCS the ‘matter’ Lagrangian density

Lmat =
1

2

∮

d3σ e (Dφ)2 , (3.8)

In this case, the variation of Ai yields the SDiff3-invariant equation

⋆F i = −J i ≡ −1

2
e−1εijk∂j

~φ ·D∂k
~φ . (3.9)

Here we use the language of differential forms in D = 3 Minkowski space with ⋆ the Hodge

dual operator.

3.2 SDiff3 → SDiff2

Consider the following Lagrangian density

L =

∮

d3σ e

[

−1

2
ηµν (DµφDνφ)

]

+
1

2g
LCS , (3.10)

where g is an arbitrary non-zero coupling constant. Let us suppose that the ‘internal’

3-manifold of this theory takes the form

M3 = M2 × S1 (3.11)

for some 2-manifold M2. In this case we may split the local M3 coordinates such that

σi → (σa, σ∗) , (a = 1, 2) (3.12)
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where σa are local coordinates for M2, and σ∗ is a local coordinate for S1, periodically

identified with unit period. We also have e = e2e1 where e2 is a scalar density on M2, and

we may choose e1 = 1 without loss of generality, so that e2 = e.

If we suppose that φ is periodically identified then

φ ∼ φ+
√
m (3.13)

for some mass parameter m since φ2 has dimensions of mass in fundamental units. The φ

field now maps the S1 factor of M3 to another circle, so the φ field space decomposes into

a sum of spaces with distinct degree for this map. We will focus on the maps of degree

one, for which

φ =
√
mσ∗ + ϕ , (3.14)

where ϕ is a function on M2 only. The SDiff3 gauge variation of ϕ is

δξϕ = −ξa∂aϕ−√
mξ∗ . (3.15)

This allows us to partially fix the SDiff3 gauge invariance by choosing

ϕ = 0
(

⇒ Dφ =
√
ms∗

)

. (3.16)

This restricts us to SDiff3 gauge transformations with ξ∗ = 0; i.e. the ξa transformations,

but these are not yet those of SDiff(M2) because ξa may still depend on σ∗. This is

understandable because all fields may also still depend on σ∗.

To proceed, we will now dimensionally reduce by declaring that all fields (other than

φ) are independent of σ∗. This is, of course, equivalent to keeping only the leading term

in a Fourier expansion of all fields. In particular, we have ∂∗s
∗ = 0, so the constraint (2.7)

reduces to

∂a (esa) = 0 , (3.17)

and hence s∗ (actually its zero mode on S1) is now unconstrained. Moreover, the CS-type

3-form reduces to the sum of an exact 3-form and the 3-form

LCS = 2

∮

d2σ es∗ ∧G , (3.18)

where G is the YM field strength 2-form:

G ≡ G∗ = dA∗ −
1

2
e−1εab∂aA∗∂bA∗ . (3.19)

Our starting Lagrangian density (3.10) now becomes

L = −1

2

∮

d2σ e

[

mηµνs∗µs
∗
ν − 1

g
s∗µ ε

µνρGνρ

]

. (3.20)

Eliminating s∗µ, we arrive at the Lagrangian density for an SDiff2 pure YM theory:

L = − 1

4mg2

∮

d2σ eGµνG
µν . (3.21)

As pointed out below (2.32), this is not pregauge invariant; as derived here, this follows

from the fact that the dimensional reduction breaks pre-gauge invariance.
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3.3 N = 1 supersymmetry

It is straightforward to construct N = 1 supersymmetric actions invariant under SDiff3

gauge transformations for D = 3. We will need to introduce 2×2 Dirac matrices γµ, which

we may choose such that

γµν = εµνργρ . (3.22)

We will also need to introduce the D = 3 charge conjugation matrix C, which is real

antisymmetric, and equal to γ0 in a real representation for the Dirac matrices. Note that

the matrices Cγµ are symmetric. For a Majorana spinor, λ say, the Dirac conjugate equals

the Majorana conjugate, so

λ̄ = λtC , (3.23)

where the superfix t indicates ‘transpose’.

Let us consider first the supersymmetric extension of the ‘CS’ term. This is

LN=1
CS = LCS − i

2

∮

d3σ εijkχ̄i ∂jχk , (3.24)

where χi = dxµχµi is a Grassmann-odd 1-form on M3 that is also a D = 3 Minkowski

space Majorana spinor (we suppress spinor indices). The corresponding action is invariant

under the infinitesimal supersymmetry transformations

δAµ i =
i√
2
ǭγµχi , δχi = − 1√

2
γµνǫGµν i , (3.25)

where Gµν i are the components of the pre-field-strength 2-form Gi, and ǫ is a constant

anticommuting Majorana spinor parameter. The coefficient 1/
√

2 is introduced here for

later convenience.

We may couple to this CS-type theory any number of scalar multiplets with component

fields that are scalars on M3. For simplicity, we consider a single scalar multiplet with scalar

field φ and two-component Majorana spinor field ψ. Consider the Lagrangian density

L0 = −1

2

∮

d3σ e
[

ηµνDµφDνφ+ iψ̄γµDµψ +
(

W ′
)2 − iW ′′ψ̄ψ

]

, (3.26)

for any real (superpotential) function W (φ). This is not supersymmetric by itself, but the

Lagrangian density

LN=1
matter = L0 −

i√
2

∮

d3σ εijk
(

ψ̄ ∂jχk

)

∂iφ , (3.27)

is invariant under the combined transformations of (3.25) and

δφ = iǭψ , δψ =
(

γµDµφ+W ′
)

ǫ . (3.28)

If we now add these two N = 1 supersymmetric Lagrangian densities, introducing a

coupling constant g to allow for different relative weights, we have

L = L0 +
1

2g
LCS − i

∮

d3σεijk
[

1

4g
χ̄i∂jχk +

1√
2
χ̄i∂j (ψ∂kφ)

]

. (3.29)
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The χi equation of motion determines χi only up to a total M3 derivative because this is

clearly a gauge invariance of the action; we may fix this gauge such that

χi = −
√

2gψ ∂iφ . (3.30)

The net result is the Lagrangian density

L = −1

2

∮

d3σ e
[

ηµνDµφDνφ+ iψ̄γµDµψ +
(

W ′
)2 − iW ′′ψ̄ψ

]

+
1

2g
LCS . (3.31)

This is invariant, omitting a total spacetime derivatives, under the infinitesimal supersym-

metry transformations

δφ = iǭψ, , δψ =
(

γµDµφ+W ′
)

ǫ , δAµi = −ig (ǭγµψ) ∂iφ . (3.32)

The ‘CS’ term is essential for the invariance, and also needed is the Fierz identity

γµdχ (dχ̄γµdχ) ≡ 0 . (3.33)

3.4 Superspace

We now aim to recover the above model using superspace techniques. We begin by writing

the superspace exterior derivative as

d = EαDα + Eµ∂µ (3.34)

where (Eα, Eµ) are a basis of 1-forms on superspace such that the 2-component Majorana

spinor derivative Dα has the anti-commutator

[Dα,Dβ ]+ = 2i (Cγµ)αβ ∂µ . (3.35)

The fields (φ, χ) combine to form a single superfield φ such that
√

2Dαφ = χα. As is

customary, we use the same symbol to denote both a superfield and its first component

since when these components are defined in terms of spinor derivatives (rather than by

superfield expansion) each component equation may be interpreted as a superfield equation.

SDiff gauge fields are introduced via the SDiff covariant superspace exterior derivative

D = d+ LΣ , ∂i

(

eΣi
)

= 0 , (3.36)

where

Σi = Eαςiα + Eµsi
µ , (3.37)

so that

D = EαDα + EµDµ , (3.38)

where, for example,

Dαφ = Dαφ+ ςα
i∂iφ , Dµφ = ∂µφ+ sµ

i∂iφ . (3.39)

– 14 –



J
H
E
P
0
2
(
2
0
0
9
)
0
1
3

The components (ς, s) of the superspace SDiff potential Σ, both of which are superfields,

are related by the requirement that

[Dα,Dβ ]+ = 2i (Cγµ)αβ Dµ , (3.40)

which implies that

D(ας
i
β) = D(ας

i
β) + ςj(α∂jς

i
β) = i (Cγµ)αβ s

i
µ . (3.41)

Using this equation, one may show that the ‘matter’ Lagrangian density of (3.27) is repro-

duced, on elimination of auxiliary fields, by the superspace Lagrangian density

Lmatter = −1

2

∮

d3σ e
[

D̄φDφ− 4iW (φ)
]

. (3.42)

To verify this, one must use the superspace integration measure d3x1
8 [D̄,D].

To write the superspace Lagrangian for the CS-type term we first solve the divergence-

free constraint on Σ by writing

Σi = e−1εijk∂jΛk , (3.43)

where Λi is the superspace pre-potential; in terms of its (superfield) components (λi, Ai),

we have

ςi = e−1εijk∂jλk , si = e−1εijk∂jAk , (3.44)

where

D(αλβ) i = i (Cγµ)αβ Aµ i . (3.45)

Next, we introduce the superspace SDiff3 field-strength 2-form

F i = dΣi + Σj∂jΣ
i . (3.46)

This can be written, locally on M3, in terms of a superspace pre-field-strength Gi as

F i = e−1εijk∂jGk , Gi = dΛi + Σj∂[jΛi] . (3.47)

One may now show that (3.45) is equivalent to

Gi αβ = 0 , (3.48)

which is the pre-field strength analog of the standard Yang-Mills superspace constraints.

This follows from

Λi = EµAµi + Eαλαi , D = EµDµ + EαDα , Σi = EµAµi + Eαλαi

Gi =
1

2
Eα ∧ EβGαβi + Eα ∧EµGµαi +

1

2
Eµ ∧EνGνµi , (3.49)

after taking into account that

dEa = −2iEα ∧ Eβ(Cγµ)αβ . (3.50)

The superspace 4-form
∮

d3σ eF iGi is both SDiff3 and pregauge invariant, but we can-

not use it to construct directly the superspace integrand for the CS-type term. However,
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using the techniques of [34, 35] we may map the ‘CS’ superspace 3-form to the CS-type

Lagrangian density

L = −4i

∮

d3σe

[

W̄ iλi −
1

12
ǫijk ς̄

iγµςjsµ
k

]

, (3.51)

where7

W i = − i

2
γµDµς

i +
i

4
D̄Dςi . (3.52)

One may verify that this reproduces (3.24) in the Wess-Zumino gauge.

4. BLG

Let φI (I = 1, . . . 8) be a Spin(8) 8v-plet of real scalar fields, and ψA (A = 1, . . . 8) a Spin(8)

8s-plet of Majorana anticommuting Sl(2; R) spinor fields, both on the cartesian product

of 3-dimensional Minkowski spacetime with some 3-dimensional closed manifold without

boundary, M3. Let ρI be the 8 × 8 Spin(8) ‘sigma’ matrices, and ρ̃I their transposes, as

in [21]. Note that

ρIJ := ρ[I ρ̃J ] (4.1)

is antisymmetric in its spinor indices. We also define

ρ̃IJK := ρ̃[IρJK] , ρIJKL := ρ[I ρ̃JKL] . (4.2)

Now consider the following Lagrangian density

LM2 =

∮

d3σ

[

−1

2
e |Dφ|2 − i

2
e ψ̄γµDµψ +

ig

4
εijk∂iφ

I∂jφ
J

(

∂kψ̄ρ
IJψ

)

−g
2

12
e
{

φI , φJ , φK
}2

]

+
1

2g
LCS , (4.3)

where g is a real dimensionless parameter, and Spin(8) indices are suppressed. This La-

grangian density varies into a total spacetime derivative under the following infinitesimal

supersymmetry transformations with 8c-plet constant anticommuting spinor parameter ǫȦ
(Ȧ = 1, . . . , 8):

δφI = iǭρ̃Iψ , δAµi = −ig
(

ǭγµρ̃
Iψ

)

∂iφ
I ,

δψ =
[

γµρIDµφ
I − g

6

{

φI , φJ , φK
}

ρIJK
]

ǫ . (4.4)

To verify this, one needs the ‘fundamental’ identity, and the Fierz identity

ρ̃Jγµdψ
(

dψ̄γµdψ
)

− ρ̃Idψ
(

dψ̄ρIJdψ
)

≡ 0 . (4.5)

If all the fields of this model are expanded in harmonics on M3 then L becomes the sum of a

Lagrangian L0 describing the centre of mass motion of the M2 condensate and a remainder

that describes the ‘internal’ dynamics. The centre-of-mass fields come from the constant

harmonic on M3. There is no contribution of the constant harmonic to si since this is

a vector on M3 (see e.g. [22]), so the centre of mass fields are those of a single N = 8

supermultiplet, with no interactions.

7This quantity arises as the spinor field strength Fαµ
i = i(γµW i)α; it is the SDiff3 counterpart of the

spinorial SYM field strength, and it has its own pre-field strength Wi, defined by W i = e−1εijk∂jWk.
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4.1 Fierz identity

Let us pause to prove (4.5). The l.h.s. can be rewritten by a Fierz rearrangement as

l.h.s. =
1

16
dψ̄OAdψ

[

ρ̃JγµOAγµ − ρ̃IOAρIJ
]

dψ , (4.6)

where the overall sign is plus because dψ is commuting, and OA is a complete set of the

16 × 16 matrices formed by tensor products of (1, γµ) with (1, ρIJ , ρIJKL). Actually, the

only matrices of this type which contribute are those for which COA is symmetric (because

dψ is commuting). This means that we have only to consider

γµ ⊗ 1 , 1 ⊗ ρIJ , γµ ⊗ ρIJKL . (4.7)

It should be clear that the first two of these will produce terms of a type that already

appear on the l.h.s. of (4.5) whereas the third does not. However, this ‘third’ matrix gives

a contribution proportional to

dψ̄γνρKLMNdψ
[

−ρ̃JρKLMN − ρ̃IρKLMNρIJ
]

γνdψ (4.8)

where we have used γµγνγµ ≡ −γν . But this contribution is zero as a consequence of

the identities

ρIJ ≡ ρI ρ̃J − δIJ , ρ̃IρKLMNρI ≡ 0 . (4.9)

This cancelation means that we now have

l.h.s. =
1

16
dψ̄γνdψ

[

−ρ̃J − ρ̃IρIJ
]

γνdψ − 1

32
dψ̄ρKLdψ

[

3ρ̃JρKL − ρ̃IρKLρIJ
]

dψ . (4.10)

The overall minus sign of the second term arises because matrices like ρ12 square to minus

the identity, and the additional factor of 1/2 compensates for the double counting implied

by the index summation convention. Using the identities

ρ̃IρIJ ≡ 7ρ̃J , ρ̃IρKLρIJ ≡ 4ρKLρ̃J − ρ̃JρKL , [ρ̃J , ρ̃KL] = 4δJ [K ρ̃L] , (4.11)

we now find that

l.h.s. = −1

2

(

dψ̄γνdψ
)

ρ̃Jγνdψ +
1

2

(

dψ̄ρIJdψ
)

ρ̃Idψ ≡ −1

2
l.h.s. , (4.12)

from which it follows that l.h.s. = 0, which is just the Fierz identity (4.5).

Another way to prove the Fierz identity is to show that it follows from the D = 11

Dirac-matrix identity that allows the construction of the D = 11 supermembrane [36]. To

see this, first write this D = 11 identity in the form

ΓMNdΨ
(

dΨ̄ΓMdΨ
)

+ ΓMdΨ
(

dΨ̄ΓMNdΨ
)

≡ 0 , (4.13)

where Ψ is an anticommuting D=11 Majorana spinors, and ΓM are the D = 11 Dirac

matrices. Next, split the 11-vector index M → (µ, I), breaking Spin(1, 10) to Sl(2; R) ×
Spin(8), and consider the I component of the D=11 identity for

Ψ =

(

ψ

0

)

, (4.14)

where the 16-component ψ transforms as the real (2,8c) of Sl(2; R)× Spin(8). This yields

the identity (4.5).
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4.2 Superconformal invariance

The Noether current corresponding to the invariance of LM2 under the supersymmetry

transformations (4.4) is

Sµ
Noether =

∮

d3σ
[

γνγµρ̃IψDνφ
I − g

6
γµρ̃IJKψ

{

φI , φJ , φK
}

]

(4.15)

but we may add to this any vector spinor that is identically divergence-free. Consider, in

particular, the ‘improved’ supersymmetry current

Sµ =

∮

d3σ

[

γνγµρ̃IψDνφ
I − g

6
γµρ̃IJKψ

{

φI , φJ , φK
}

− 1

2
ρ̃Iγµν∂ν

(

φIψ
)

]

, (4.16)

which differs from the Noether current by the addition of the final term, which is identically

divergence-free. As a consequence of this addition, one finds that the ψ equation of motion

implies that

γµSµ = 0 . (4.17)

This implies that Sµ is part of a supermultiplet that contains the ‘improved’, because

trace-free, energy-momentum stress tensor, which in turn implies that the model is super-

conformal invariant.

Note that g cannot be set to zero in the action because of the CS term. In fact, |g|
may be set to unity without loss of generality because, when |g| 6= 1, the scaling

A→ |g|2/3A , σi → |g|1/3σ (4.18)

has the effect of taking |g| → 1, except for an overall factor coming from the
∮

d3σ integral.

The choice of sign of g is presumably related to whether we wish to describe a condensate

of M2-branes or anti-M2-branes.

4.3 Equations of motion and the free-field limit

The equations of motion are

0 = DµDµφ
I − i

g

2
e−1 εijk∂iφ

J∂jψ̄ρ
IJ∂kψ +

g2

2

{{

φI , φJ , φK
}

, φJ , φK
}

,

0 = γµDµψ +
g

2
ρIJ

{

φI , φJ , ψ
}

, (4.19)

0 =
1

2
εµνρF i

νρ + g e−1 εijk
[

∂jφ
IDµ∂kφ

I − i

2
∂jψγ

µ∂kψ

]

.

Although we were unable to set g = 0 in the action, this can be done in the equations of

motion. The result is that F = 0, so that s is pure gauge. We may then choose a gauge for

which s = 0, at which point we see that we have free field equations for φ and ψ. These

equations are those of a supersymmetric theory with transformations given by (4.4) for

g = 0 and s = 0.
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4.4 M2 boundaries

Bosonic configurations that preserve susy have a spinor ǫ that obeys

ρIγµDµφ
Iǫ =

g

6

{

φJ , φK , φL
}

ρJKLǫ . (4.20)

Let us choose M3 = S3 and consider bosonic configurations for which

φa = f(x1)Xa(σ) , a = 1, 2, 3, 4 (4.21)

where Xa are the functions that map M3 to the unit 3-sphere, as discussed in the action

for general n: i.e.
4

∑

a=1

X2
a = 1 , {Xa,Xb,Xc} = ǫabcdXd . (4.22)

The field equation for the gauge potential A is then solved by s = 0, and the φ equation

reduces to

f ′′ = 3g2f5 . (4.23)

This is solved by solutions of

f ′ = −gf3 , (4.24)

which preserve 1/2 supersymmetry since the supersymmetry preservation condition (4.20)

for such solutions reduces to

f
(

1 − γ1ρ⋆

)

ǫ = 0 (4.25)

where the matrix ρ⋆, defined by

1

6
ǫabcdρbcd = ρaρ⋆ , (4.26)

squares to the identity. Thus, we have 1/2 supersymmetric solutions8 of the form

φa =
Xa(σ)
√

2gx1
(4.27)

with all other fields equal to zero [9].

Let T be the M2 tension, and define the rescaled field with dimensions of length,

Φa = φa/
√
T . (4.28)

Because
∑

a(Xa)
2 = 1, we have

4
∑

a=1

(Φa)2 =
(

1/
√

2gTx1
)2

, (4.29)

which shows that at fixed x1 we have a 3-sphere of radius r = 1/
√

2gTx1. This goes to

infinity as x1 → 0, which means that the M2-branes have expanded to a planar 5-brane

8Generic supersymmetric configurations have been classified in [38, 39].
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at x1 = 0. From the 5-brane perspective, there is a membrane ‘spike’ with 3-sphere cross

section such that

x1 =
1

2gT r2
. (4.30)

This solves the Laplace equation on E4, in polar coordinates (r, θ, ϕ, ξ). In other words we

have a solution analogous to that found in [5] representing M2-branes ending on an M5-

brane. The 5-brane tension was computed in [18] and shown to equal the M5-brane tension.

4.5 D2 condensate from M2 condensate

Recalling that a D2-brane of IIA superstring theory is just an M2-brane of M-theory

compactified on a circle [2], we should expect some analogous relation between the D2 and

M2 condensates. The former is an N → ∞ limit of a maximally supersymmetric D = 3

YM gauge theory with gauge group SU(N); as explained in the introduction, this limit

yields an SDiff2 YM theory, so a D2-condensate is described (at low energy) by an N = 8

supersymmetric D = 3 YM gauge theory with gauge group SDiff2. We shall now exploit

our earlier discussion of subsection 3.2 to show how this theory is obtained from the BLG

SDiff3 gauge theory.

As in subsection 3.2, we choose M3 = M2 × S1, such that σa are local coordinates for

M2 and σ∗ is an coordinate for the S1 factor, periodically identified with unit period, and

we take the density e to be a volume density for M2. We then set

φI = (φI , φ8) (I = 1, . . . , 7) (4.31)

and periodically identify φ8 with period
√
m. Again following subsection 3.2, we partially

fix the SDiff gauge invariance by choosing

φ8 =
√
mσ∗ , (4.32)

and we then choose to consider only the zero modes on S1 of all other fields. Let us apply

this generalized dimensional reduction9 to the BLG theory. Relative to the discussion of

subsection 3.2, there are several new ingredients. Firstly, there are an additional 7 scalar

fields, for which

DφI → DφI := dφI −
{

A,φI
}

, (A := A∗) (4.33)

which is the YM covariant derivative for the group SDiff2, realized via the Poisson bracket

{, } of functions on M2, as defined in (2.30). The SDiff3 covariant derivative of the spinor

field ψ similarly reduces to an SDiff2 YM derivative. Secondly, there is a scalar potential

V :=
g2

12

{

φI , φJ , φK
}2 → mg2

4

{

φI , φJ
}2

. (4.34)

Finally there is the Yukawa-type term

i
g

4
εijk∂iφ

I∂jφ
J

(

∂kψ̄ρ
IJψ

)

→ i
g
√
m

2
εab∂aφ

I
(

∂bψ̄ρ
8ρ̃Iψ

)

. (4.35)

9It is actually a supersymmetry-preserving variant of Scherk-Schwarz reduction similar to that considered

in [37].
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Here we have split the eight SO(8) sigma-matrices into ρ8 and the seven SO(7) sigma

matrices ρI . We thus find that

LM2 → LD2 :=

∮

d2σ e

[

−1

2
DµφIDµφ

I − 1

4mg2
GµνG

µν − mg2

4

{

φI , φJ
}2

− i

2
ψ̄γµDµψ + i

g
√
m

2
εab∂aφ

I
(

∂bψ̄ρ
8ρ̃Iψ

)

]

. (4.36)

The corresponding action is invariant under transformations of N = 8 supersymmetry that

may be deduced10 from (4.4). As the SDiff2 gauge group may be viewed as an N → ∞
limit of SU(N), it is natural to interpret LD2 as the Lagrangian density describing the

low-energy dynamics of a D2-condensate, related to the M2-condensate by reduction on

the M-theory circle.

As a further check, we will now show that LD2 is the dimensional reduction on T 7

of a D = 10 SYM theory with SDiff2 gauge group. The fields of the latter theory are a

Minkowski 1-form potential Am (m = 0, 1, . . . , 9) and a Majorana-Weyl spinor Ψ, both

scalars on M2. Let Γm be D = 10 Dirac matrices and Ψ̄ the D = 10 Majorana-conjugate

of Ψ. The D = 10 Lagrangian density is

L10 =
1

g2
10

∮

d2σ e

[

−1

4
GmnG

mn − i

2
Ψ̄ΓmDmΨ

]

, (4.37)

where g10 is a 10-dimensional coupling constant, and

Gmn = 2∂[mAn] − {Am, An} , DmΨ = ∂mΨ − {Am,Ψ} . (4.38)

In fundamental units, the mass dimensions are

[A] = 1 [Ψ] =
3

2
, [g10] = −3 . (4.39)

It may be verified that L10 varies into a total spacetime derivative under the following

infinitesimal supersymmetry transformations

δAm = iǭΓmΨ , δΨ = −1

2
ΓmnǫGmn . (4.40)

To dimensionally reduce to D = 3, we choose real D = 10 Dirac matrices of the form

Γµ = γµ ⊗ γ8 , ΓI = I2 ⊗ γI , (4.41)

where (γI , γ8) = γI are the 16 × 16 SO(8) Dirac matrices, which we may write as

γI =

(

0 ρI

ρ̃I 0

)

. (4.42)

10In principle, it is necessary to include a compensating S1-diffeomorphism to maintain the partial gauge

choice (4.32), but this has no effect on the fields appearing in (4.36) as these are σ∗-independent M2-scalars.
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In this basis, the Majorana-Weyl spinor Ψ takes the form of (4.14). Dimensional reduction

to D = 3 of the Lagrangian density L10 now yields LD2 if we set

Vol(T 7)

g2
10

=
1

mg2
(4.43)

and

AI =
√
mg φI , Ψ =

√
mgψ . (4.44)

Note that this implies that [φ] = 1/2 and [ψ] = 1, as expected for D = 3 fields.

Naturally, if we compactify from D = 10 on T 6, rather than T 7, we get a D = 4 N = 4

SDiff2 gauge theory, and S1-compactification of this theory yields the D = 3 N = 8 SDiff2

gauge theory.

4.6 N = 8 superfields

Following the original version of this paper, an N = 8 superfield formulation of the Nambu

bracket BLG field equations was found [32]; it consists of two coupled N = 8 superfield

equations for the SDiff gauge field and the scalar superfield that is also a scalar on the

three-dimensional manifold M3. We shall now review this formulation.

We may define an SDiff3-covariant exterior derivative D on N = 8 superspace exactly

as for N = 1 superspace, by introducing the M3-vector-valued 1-form potential Σi, which

is now an N = 8 superfield: we now have the following decomposition generalizing (3.38):

D = EαȦDαȦ + EµDµ , (4.45)

where

DαȦ = DαȦ + ςαȦ
i∂i , Dµ = ∂µ + sµ

i∂i . (4.46)

Here DαȦ is the standard N = 8 superspace spinor derivative, and ςαȦ
i is the 8c-plet of

superpartners to the SDiff3 gauge field sµ
i; we shall confirm this below by showing that

their respective field strengths are components of a field-strength superfield.

When acting on an M3-scalar,

D2 = F i∂i , (4.47)

where F i is the M3 vector-valued N = 8 field strength 2-form superfield. Equivalently, but

in terms of the components of D and F i, we have

[DαȦ,DβḂ]+ = 2iδȦḂ(Cγµ)αβDµ + FαȦ βḂ
i ∂i (4.48)

[

DαȦ,Dµ

]

= FαȦ µ
i∂i (4.49)

[Dµ,Dν ] = Fµν
i ∂i . (4.50)

Following [32] we impose the constraint

F i
αȦ βḂ

= 2iCαβ WȦḂ
i , (4.51)

where WȦḂ
i is in the 28 of SO(8); it is also divergence-free, so

WȦḂ
i = −WḂȦ

i , ∂i(eWȦḂ
i) = 0 . (4.52)
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Using the Jacobi identity
[

DαȦ,
[

DβḂ,DγĊ

]

+

]

−

+

[

DβḂ,
[

DγĊ ,DαȦ

]

+

]

−

+

[

DγĊ ,
[

DαȦ,DβḂ

]

+

]

−

≡ 0 , (4.53)

one finds that

FαȦ µ
i = i

(

γµWȦ
i
)

α
, WαḂ

i :=
i

7
DαȦWȦḂ

i , (4.54)

and that

Dα(ȦWḂ)Ċ
i = iWαḊ

i
(

δḊ(ȦδḂ)Ċ − δḊĊδȦḂ

)

. (4.55)

Using the Jacobi identity
[

Dµ,
[

DβḂ,DγĊ

]

+

]

−

+

[

DγĊ

[

DβḂ,Dµ

]

−

]

+

+

[

DβḂ

[

DγĊ ,Dµ

]

−

]

+

≡ 0 , (4.56)

one finds that

Fµν
i =

1

8
ǫµνρW

ρi , Wµ
i :=

1

2
D̄ȦγµWȦ

i , (4.57)

and also that

DȦ(αWβ)Ḃ
i = (Cγµ)αβ

(

DµWȦḂ
i − 4δȦḂWµ

i
)

, Dα(ȦW
α
Ḃ)

i = 0 . (4.58)

We see that the SDiff field strength supermultiplet includes a scalar 28 (WȦḂ
i), a spinor

8c (WαȦ
i) and a singlet divergence-free vector (W µi). There are many other independent

components but these become dependent on-shell. The relevant Chern-Simons-like (CS-

like) superfield equation in the absence of ‘matter’ supermultiplets is obviously WȦḂ
i = 0,

since this sets to zero all SDiff3 field strengths. We shall see below how this must be

modified in the presence of ‘matter’.

We now introduce an 8v-plet of scalar, and SDiff3-scalar, superfields φI . The lowest

component, which we also call φI , may be identified with the BLG scalar fields. One then

expects to find the superpartners in the next component, at least on-shell, and they should

appear as the lowest component of an 8s-plet of spinor superfields ψȦ. We therefore impose

the constraint11

DαȦφ
I = iρ̃I

ȦB
ψαB . (4.59)

Acting on this constraint with an SDiff3-covariant spinor derivative, and making use of the

anticommutation relation (4.48), one finds that

Dα[Ȧρ̃
I
Ḃ]Cψ

α
C = 2WȦḂ

i∂iφ
I , (4.60)

which is solved by what was called in [32] the ‘super-CS’ equation

WȦḂ
i =

2g

e
εijk∂iφ

I∂jφ
J ρ̃IJ

ȦḂ
. (4.61)

It was shown in [32] that the two N = 8 superfield equations (4.59) and (4.61) imply the

Nambu-bracket BLG equations (4.19).

11This equation was called the superembedding-like equation in [32] because it can be obtained from the

‘superembedding’ equation for a single M2-brane [40] by first linearizing with respect to the dynamical

fields in the static gauge, as in [41], and then covariantizing the result with respect to SDiff3.
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5. Pure-spinor superspace

An off-shell N = 8 superfield formulation of the abstract BLG theory was proposed by

Cederwall [30]. This formulation involves a ‘pure-spinor superspace’ for which there is

an additional 8c-plet12 of complex commuting spinor coordinates λȦ satisfying the ‘pu-

rity’ condition

λ̄γµλ = 0 ,
(

λ̄ := λtC
)

(5.1)

where the summed Spin(8) indices have been suppressed. In other words, the pure-spinor

superspace is parametrized by the standard N = 8 D = 3 superspace coordinates (xµ, θα
Ȧ
)

together with λα
Ȧ
. This is a variant of the D = 10 pure-spinor superspace first proposed by

Howe [42] and, from a more general perspective, a realization of the harmonic superspace

programme of [43]. All pure-spinor superfields will be assumed to be analytic functions of

λ that can be expanded as a Taylor series in powers of λ. Our aim here is to extend this

formalism to the Nambu bracket realization of the BLG theory in which all pure-spinor

superfields are additionally functions on the closed 3-manifold M3.

5.1 Pure spinor Fierz identities

We begin by establishing some properties of the pure-spinor λ. The only analytic nonvan-

ishing pure spinor bilinears are

MIJ := λ̄ ρ̃IJλ , Nµ
IJKL := λ̄ γµρ̃IJKLλ . (5.2)

For example,

λ̄ȦλḂ =
1

16
M IJ ρ̃IJ

ȦḂ
, λ̄ȦγµλḂ =

1

16 · 4! N
IJKL
µ ρ̃IJKL

ȦḂ
. (5.3)

It was stated in [30] that the constraint (5.1) implies the identity

MIJ ρ
Jλ ≡ 0 . (5.4)

This can be proved as follows. A Fierz transformation of the left hand side yields

MIJ ρJλ = −1
8 ρ

I
(

MPQ ρPQ λ− 1
120N

PQRS
µ γµρPQRSλ

)

, (5.5)

which implies that

MPQ ρPQλ =
1

120
Nµ

PQRS γµρPQRSλ . (5.6)

A Fierz transformation of the left hand side of this equation leads, on using the identities

ρPQ ρJK ρPQ = −8 ρJK , ρPQ ρJKLM ρPQ = 8 ρJKLM , (5.7)

to the conclusion that

MPQ ρPQλ =
1

72
Nµ

PQRS γµρPQRSλ . (5.8)

12Actually, 8s valued bosonic spinors were used in [30], but this is just a matter of convention.
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Comparing (5.8) with (5.6), we see that

MPQ (ρI ρPQ)λ = Nµ
PQRS γµ (ρIρPQRS)λ = 0 , (5.9)

and using this in (5.5) we deduce (5.4).

The purity condition on λ also implies the following identities, the first of which was

used in [30]:

(a) M[IJMKL] = 0 , (b) NPQ[IJ ·NKL]PQ ≡ 0 . (5.10)

To prove these identities, it is convenient to begin by defining

MIJKLPQ := λ̄ ρ̃IJKLPQλ =
1

2
ǫIJKLPQRSMRS , (5.11)

and taking note of the following Spin(8) sigma-matrix identities

λ̄
(

ρ̃[IJ ρ̃
PQ ρ̃KL]

)

λ = MIJKLPQ + 4M[IJδK
P δL]

Q

λ̄γµ

(

ρ̃[IJ ρ̃
PQRS ρ̃KL]

)

λ = 24Nµ
[RS

[IJ δK
P δL]

Q] , (5.12)

λ̄
(

ρ̃IJKL ρ̃PQ
)

λ = MIJKLPQ − 12M[IJ δK
P δL]

Q

λ̄γµ
(

ρ̃IJKL ρ̃PQRS
)

λ = −72Nµ
[RS

[IJ δK
P δL]

Q] , (5.13)

and

λ̄
(

ρ̃IJKLMN ρ̃PQ ρ̃MN

)

λ = 4MIJKLPQ + 144M[IJδK
P δL]

Q

λ̄γµ

(

ρ̃IJKLMN ρ̃PQRS ρ̃MN

)

λ = −288 N [RS
µ [IJδK

P δ
Q]
L] . (5.14)

Now, performing a Fierz transformation of the left hand side of (5.10b), we deduce, on

using (5.12), that

M[IJMKL] +
1

36
MRSMIJKLRS +

1

36
NPQ[IJ ·NKL]PQ = 0 . (5.15)

Next we note that the purity condition implies that

(λ̄γµλ)Nµ
IJKL = 0 . (5.16)

A Fierz transformation of the left hand side leads, on using (5.13), to the equation

M[IJMKL] −
1

12
MRSMIJKLRS +

1

12
NPQ[IJ ·NKL]PQ = 0 . (5.17)

Finally, a Fierz transformation of MRSMIJKLRS , and use of (5.14), leads to the relation

M[IJMKL] +
1

4
MRSMIJKLRS +

1

12
NPQ[IJ ·NKL]PQ = 0 . (5.18)

One can check that the system of three equations, (5.15), (5.17) and (5.18) for the three

‘variables’ M[IJMKL], MRSMIJKLRS and NPQ[IJ · NKL]PQ, has only the trivial solution.

This proves (5.10).
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5.2 Off-shell BLG

Again following [30], we define the BRST-type operator

Q := λ̄D , (5.19)

which satisfies Q2 ≡ 0 as a consequence of the purity condition (5.1). We also introduce an

M3-vector-valued complex anticommuting scalar Ψi. In the present context, Ψi will play

the role of the SDiff3 gauge potential; its SDiff3 gauge transformation, with commuting

M3-vector parameter Ξ, is

δΨi = QΞi + Ψj∂j Ξi − Ξj∂jΨ
i , ∂i

(

eΞi
)

= 0 . (5.20)

We require that ∂i

(

eΨi
)

= 0 so that, locally on M3,

Ψi = e−1εijk∂j Πk , (5.21)

where Πi is the complex anticommuting, and spacetime scalar, pre-gauge potential of

this formalism. Note that, in contrast to the rather similar formalism of section 2, the

gauge potential and pre-potential are Minkowski scalars (albeit anticommuting) rather

than one-forms.13

Next, following our N = 1 superspace discussion at the end of subsection 3.4, we may

introduce the field-strength superfield

F i := QΨi + Ψj∂jΨ
i = e−1εijk∂jGk , (5.22)

where the last equality is valid locally on M3 and

Gi := QΠi + Ψj∂jΨi (5.23)

is the pre-field-strength superfield of this formalism. Both F i and Gi are SDiff3 covariant,

so F iGi is an SDiff3 scalar and its integral is also pre-gauge invariant (i.e. invariant under

δΠi = ∂iα with an arbitrary anticommuting scalar α). Furthermore, this integral is Q-

exact, in the sense that
∫

d3σ eF iGi = QLCS , (5.24)

where

LCS =

∫

d3σ e

(

ΠiQΨi − 1

3
ǫijkΨ

iΨjΨk

)

(5.25)

is the CS-type Lagrangian density of this formalism; it is the Nambu-bracket version of the

term proposed in [30] for the abstract BLG theory, although our construction is different.

Note that LCS is both complex and anti-commuting.

We now introduce the 8v-plet of complex scalar N = 8 ‘matter’ superfields ΦI , with

SDiff3 variation

δΦI = Ξi∂iΦ
I . (5.26)

13This is not so surprising when one recalls that the exterior product of ‘bosonic’ one-forms provides a

representation of Grassmann algebra multiplication.
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We allow these superfields to be complex because they may depend on the complex pure-

spinor λ but, to make contact with the on-shell N = 8 superfield equations of subsec-

tion (4.6), we will need to impose a reality condition such that

ΦI = φI + O (λ) , (5.27)

where φI is a real 8v-plet of ‘standard’ N = 8 scalar superfields. We also define an SDiff3-

covariant extension of QΦI by

QΦI := QΦI + Ψi∂iΦ
I . (5.28)

We must use this SDiff3-covariant quantity to construct a ‘matter’ Lagrangian that can be

added to the ‘CS’ term, which means that it must also be anti-commuting and analytic in

λ. One possibility is

Lmat =
1

2
MIJ

∮

d3σ eΦIQΦJ , (5.29)

with MIJ as defined in (5.2). To ensure manifest N = 8 supersymmetry one still needs

to specify an adequate superspace integration measure. We refer to [31] for details of this

measure, which has the crucial property of allowing us to discard a BRST-exact terms

when varying with respect ΦI . This variation yields the superfield equation

MIJQΦJ = 0 , (5.30)

which implies, as a consequence of the identity (5.10a), that

QΦI = λ̄ρ̃IΘ (5.31)

for some 8s-plet of complex spinor superfields ΘαA. The first nontrivial (∼ λ) term in

the λ-expansion of this equation is precisely the on-shell superspace constraint (4.59) with

ψ = Θ|λ=0, which is real as a consequence of the assumed reality of φI .

The combined SDiff3-invariant, complex and anti-commuting, Lagrangian density

L = Lmat −
1

g
LCS (5.32)

is therefore a candidate for an off-shell N = 8 superfield formulation of the Nambu-bracket

realization of the BLG theory, along the lines of [30]. The Πi equation of motion of this

combined Lagrangian is

F i =
g

2e
MIJǫ

ijk∂jΦ
I∂kΦ

J . (5.33)

At this stage it is important to assume that Ψi has ‘ghost number one’ [30], which means

that it is a power series in λ with vanishing zeroth order term (and similarly for its pre-

potential Πi). In other words

Ψi = λα
Ȧ
ςi
αȦ

, (5.34)

where ςi is an M3-vector-valued 8c-plet of arbitrary anticommuting spinors. Its zeroth

component in the λ-expansion is the fermionic SDiff3 potential introduced, with the same
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symbol, in (4.46). With this ‘ghost number’ assumption, (5.33) produces at lowest non-

trivial order (∼ λ2) the superspace constraints (4.48) for the ‘ghost number zero’ con-

tribution ςi|λ=0 to the pure spinor superfield ςi in (5.34), accompanied by the super CS

equation (4.61) for the field strength WȦḂ constructed from this potential.

We have now shown how the on-shell N = 8 superfield formulation of subsection 4.6,

and hence all BLG field equations, may be extracted from the equations of motion derived

from the pure spinor superspace action (5.32). Of course, the field content and equations

of motion should be analyzed at all higher-orders in the λ-expansion. Our results are

consistent with the conjecture that the field equations of the action (5.32) are equivalent

to those of the on shell superfield formulation of 4.6, in which case our results would imply

that all higher-order fields in the λ expansion are auxiliary. Our results are also consistent

with the weaker conjecture that all ‘higher-order’ fields are either auxiliary or decouple, in

which case they might be removed by some ghost-number constraint. We shall not attempt

to prove either of these conjectures here. Instead, we limit ourselves to the observation that

a full analysis must take into account the existence of additional gauge invariances [30, 31];

in the present context, one may use the identities (5.10) to show that the BLG action is

invariant under the infinitesimal transformations

δΦI = λ̄ρ̃Iζα + (Q + Ψj ∂j)K
I , δΠi = KI MIJ ∂iΦ

J , (5.35)

for arbitrary pure-spinor-superfield parameters ζα and KI .

6. Discussion

It has been known for some time that there exist Yang-Mills gauge theories, in D-

dimensional Minkowski spacetime, for which the gauge group is the infinite-dimensional

group of area-preserving diffeomorphisms SDiff(M2) of M2, a closed two-dimensional man-

ifold that is compact with respect to some volume form. The manifold M2 plays the role of

an ‘internal’ space on which all Minkowski-space fields are also tensors, e.g. functions. Such

models first arose for D = 1 as gauge-mechanics models governing the light-cone-gauge dy-

namics of a relativistic membrane [23, 24]; it was later appreciated that the construction

applies for any D [28]. A natural question is whether there exist gauge theories for which

the gauge group is the group SDiff(Mn) of volume-preserving diffeomorphisms of some n-

dimensional manifold Mn for n ≥ 3; we assume that Mn is closed and compact with respect

to some volume n-form. Examples, with n = p, may be found for D = 1 by light-cone

gauge fixing of a relativistic p-brane [27], but no gauge-field kinetic term is required in

this case. In this paper, we have developed a general formalism for the construction of

D > 1 gauge theories of n-volume-preserving diffeomorphisms. We ignored some global

issues that distinguish between manifolds Mn of different topology, partly because we are

mostly interested in the simplest case in which Mn is the n-sphere; for that reason we

abbreviated SDiff(Mn) to SDiffn.

The construction of a gauge-field kinetic term for an SDiffn gauge theory is obstructed

by the absence of a metric on Mn (as any metric could not be SDiffn inert, it would have

to be introduced as a dynamical variable and then we would have some GR-type theory
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rather than a Minkowski field theory). As far as we can see, this obstacle is insuperable for

n ≥ 4, but there are options for n = 3. In particular, we have constructed a SDiff3 invariant

analog of the D = 10 super-YM theory. This theory is unphysical because the energy is

not positive definite but it is nevertheless an example of an ‘exotic’ D > 3 Minkowski-

space gauge theory; i.e. one not of YM type. This shows that the uniqueness of the YM

minimal interaction for D > 3 [44, 45] fails to apply when the number of massless vector

fields is infinite. For D = 3 there is another possibility for the construction of an SDiff3

invariant gauge-field kinetic term; this is an analog of the YM Chern-Simons (CS) term

although the SDiff3 version is parity even because a parity flip in Minkowski spacetime

can be ‘undone’ by a parity flip in the ‘internal’ 3-space. We have shown how to construct

a general class of N = 1 supersymmetric SDiff3 gauge theories with this CS-type kinetic

term, in components and using superspace methods.

Of particular interest is the special case of the superconformal D = 3 SDiff3 gauge

theory with maximal N = 8 supersymmetry, because this is the Nambu-bracket realization

of the BLG theory [9, 10], which can be viewed as describing a ‘condensate’ of coincident

planar M2-branes; this realization was first considered by Bagger and Lambert [18], but

the CS-type term appears first in [20]. We have presented here the full Lagrangian and

supersymmetry transformation laws in a simple form. Following the original version of this

paper, an N = 8 superspace formulation of the SDiff3 gauge theory was proposed by one of

us [32], and we have reviewed this work, presenting some additional simplifications. This

formalism makes the N = 8 supersymmetry manifest, although only at the level of the

equations of motion. An alternative off-shell N = 8 superfield formalism of the abstract

BLG theory was proposed around the same time by Cederwall [30, 31]; his formalism uses

fields defined on a pure-spinor extension of N = 8 superspace. We have shown here how

this pure-spinor superspace formalism can be fused with our SDiff3 formalism to give an

off-shell action for the M2 condensate, although we did not attempt a full analysis of the

field content.

The BLG theory was found by requiring that the Basu-Harvey equation [8], proposed to

describe N M2-branes ending on an M5-brane, should arise as a condition for preservation

of 1/2 supersymmetry. The original equation is solved by a tube-like configuration with

a ‘fuzzy’ 3-sphere cross-section but this fuzzy 3-sphere becomes a smooth 3-sphere in the

Nambu-bracket realization [18]. Here we have verified that this ‘smoothed’ Basu-Harvey

equation is an equation for preservation of 1/2 supersymmetry in the context of the SDiff3

invariant theory for an M2 condensate. This could be viewed as further evidence of the

connection between the BLG theory and the M5-brane [19, 20] although we believe this

connection has not yet been properly understood; our current views on this topic can be

found in [21].

In the special case that M3 = M2 × S1, we have shown that one may perform a

dimensional reduction of the SDiff3 invariant BLG theory to arrive at an SDiff2-invariant

D = 3 Yang-Mills gauge theory with maximal supersymmetry, which we interpreted as

a model governing the low-energy dynamics of a D2-brane condensate of IIA superstring

theory; recall that SDiff2 may be loosely viewed as the N → ∞ limit of SU(N), and that

the low-energy dynamics of a collection of N planar D2-branes is governed by a maximally
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supersymmetric D = 3 SU(N) gauge theory. Results of [46] suggest that different ways of

taking the large N limit of SU(N) lead to different topologies for M2, and we imagine that

something similar might apply to M3 in the case of the M2-brane condensate. This issue

is connected to the important question that we passed over in the introduction: the nature

of the low-energy dynamics of N coincident planar M2-branes for finite N .

It is tempting to suppose that an action describing the infra-red dynamics of N coin-

cident M2-branes can be obtaned by some discretization of the Nambu-bracket 3-algebra

of functions on S3, but this idea runs into the difficulty, mentioned the introduction, that

there is no suitable sequence of finite-dimensional metric Filippov 3-algebras labelled by

N . There have been several proposals to circumvent this difficulty. One is to consider

other types of algebra, e.g. [47]. Another is to allow non-metric Filippov 3-algebras, which

means that one is restricted to consider equations of motion; in this scheme there is a natu-

ral explanation for the expected N3/2 scaling of the number of degrees of freedom with the

number N of M2-branes [48] (see also [49]). Basically, fields on S3 become n×n×n ‘cubic

matrices’ with ∼ n3 degrees of freedom. However, the potential vanishes for fields on S3

that depend on only two of its coordinates, and these become ‘standard’ n × n matrices

with ∼ n2 degrees of freedom. The moduli space of vacua therefore has dimension ∼ n2,

so that the number N of M2-branes described by the model scales with n like n2; the

number of degrees of freedom therefore scales with N like N3/2, exactly as predicted by

AdS/CFT [50].

This ‘success’ of the Nambu-bracket approach may be contrasted with currently pop-

ular ‘ABJM’ proposal that involves an U(N) × U(N) CS theory at level k = 1, with

bi-fundamental matter [51]; this model has a manifest N = 6 supersymmetry but is con-

jectured to be N = 8 supersymmetric. It is a ‘conventional’ theory in the sense that its

construction does not involve 3-algebras, but it is strongly coupled and so one cannot ex-

pect to read off the degrees of freedom from the Lagrangian. This is just as well since the

conventional gauge theory structure would lead one to expect the number of degrees of

freedom to scale like N2, so one is led to conjecture that this is reduced to N3/2 by strong

coupling effects. Although there is considerable support for this proposal, e.g. [52 – 54], it

seems to us that it is more like a restatement of the problem (to one of strong coupling

dynamics) than a solution to it.

If the ABJM proposal is correct, as seems likely, it should be possible to take the limit

of large N to find the theory describing the M2-condensate, which could then be compared

with the SDiff3 gauge theory presented in detail here. However, this would involve taking

two limits simultaneously, strong coupling and large N . Double limits are notoriously

tricky; they may not commute. It seems quite possible that one such limit could yield the

N = 8 supersymmetric SDiff3 gauge theory, so there is no logical contradiction between

the Nambu bracket approach advocated here and the conventional CS approach of ABJM.

Another outstanding problem is the nature of the D = 6 conformal field theory gov-

erning the low energy dynamics of N coincident M5-branes. In light of what we now know

about multiple coincident M2-branes, it seems likely that this problem will simplify in the

N → ∞ limit. Given that a condensate of M2-branes may be viewed, in some sense, as an

M5-brane, then is there a similar sense in which an M5 condensate could be viewed as a
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yet higher-dimensional M-brane? Recalling that the recent advances in the M2 case were

prompted by the Basu-Harvey proposal that the boundary of multiple M2-branes on an

M5-brane might be understood in terms of fuzzy 3-spheres, it is natural to reconsider the

implications of the recent demonstration [55] that an M5-brane can have a boundary on

an M9-brane, which is a boundary of the 11-dimensional bulk spacetime of M-theory; in

this context we should mention that higher-dimensional generalizations of the Basu-Harvey

equation have been considered in [49, 56].
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